
1

OverBlownINS: The Incompressible Navier–Stokes Solver in
OverBlown

William D. Henshaw
Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, CA, 94551.
henshaw@llnl.gov
http://www.llnl.gov/casc/people/henshaw
http://www.llnl.gov/casc/Overture

November 6, 2003

Abstract:
This document describes OverBlownINS, a solver written using the Overture framework to solve the
incompressible Navier-Stokes (INS). OverBlownINS is part of the OverBlown solver. The INS solver
can be used to the solve time-dependent Navier-Stokes equations to second and fourth-order accuracy.
There is also a pseudo-steady line implicit solver with a nonlinear second- or fourth-order artificial
dissipation.

CONTENTS 2

Contents

1 Introduction 3

2 The Equations 3

3 Discretization 3

4 Divergence Damping 4

5 Artificial Diffusion 4

6 Boundary Conditions 6

7 Boundary conditions for the fourth-order method 7

8 Turbulence models 12
8.1 Spalart-Allmaras turbulence model . 12
8.2 k − ε turbulence model . 14
8.3 Diffusion Operator . 14
8.4 Revised pressure equation . 15

8.4.1 Revised pressure boundary condition . 16

9 Steady state line solver 18
9.1 Fourth-order artificial dissipation . 19

10 Convergence results 20

11 Some interesting examples 23
11.1 Incompressible flow past a mast and sail . 23
11.2 Two falling bodies in an incompressible flow . 24
11.3 Incompressible flow past a truck . 25
11.4 Incompressible flow past a city scape . 26

1 INTRODUCTION 3

1 Introduction

This document is currently under development.
OverBlownINS is a solver for the incompressible Navier-Stokes equations. OverBlown is a fluid flow

solver for overlapping grids built upon the Overture framework [1],[4],[2].

2 The Equations

The incompressible Navier-Stokes equations are

ut + (u · ∇)u + ∇p = ν∆u, (1)

∇ · u = 0. (2)

We solve the incompressible Navier-Stokes equations written in the form (pressure-poisson system)

ut + (u · ∇)u + ∇p − ν∆u − f = 0
∆p − (∇u · ux + ∇v · uy + ∇w · uz) − Cd(ν)∇ · u −∇ · f = 0

}

x ∈ Ω (3)

B(u, p) = 0
∇ · u = 0

}

x ∈ ∂Ω

u(x, 0) = u0(x) at t = 0

There are nd boundary conditions, B(u, p) = 0, where nd is the number of space dimensions. On a no-slip
wall, for example, u = 0. In addition, a boundary condition is required for the pressure. The boundary
condition ∇ · u = 0 is added. With this extra boundary condition it follows that the above problem is
equivalent to the formulation with the Poisson equation for the pressure replaced by ∇·u = 0 everywhere.
The term Cd(ν)∇ · u appearing in the equation for the pressure is used to damp the divergence [5]. For
further details see also [3]

3 Discretization

Let Vi and Pi denote the discrete approximations to u and p so that

Vi ≈ u(xi) , Pi ≈ p(xi) .

Here Vi = (V1i, V2i, V3i) and i = (i1, i2, i3) is a multi-index. After discretizing in space the equations we
solve are of the form

d
dt
Vi + (Vi · ∇h)Vi + ∇hPi − ν∆hVi − f(xi, t) = 0

∆hPi −
∑

m ∇hVm,i · Dm,hVi − Cd,i∇h · Vi −∇h · f(xi, t) = 0

}

x ∈ Ω

B(Vi, Pi) = 0
∇h · Vi = 0

}

xi ∈ ∂Ωh

V(xi, 0) = U0(xi) at t = 0

where the divergence damping coefficient, Cd,i is defined below. The subscript “h” denotes a second or
fourth-order centred difference approximation,

Dm,h ≈
∂

∂xm

, ∇h = (D1,h, D2,h, D3,h) , ∆h ≈
∑

m

∂2

∂x2
m

4 DIVERGENCE DAMPING 4

Extra numerical boundary conditions are also added, see [3] [8] for further details. An artificial diffusion
term can be added to the momentum equations. This is described in section (5).

When discretized in space on an overlapping grid this system of PDEs can be thought of as a large
system of ODEs of the form

dU

dt
= F(t,U,P)

where U is a vector of all solution values at all grid points. For the purpose of discussing time-stepping
methods it is often convenient to think of the pressure as simply a function of U, P = P(U) There are
also interpolation equations that need to be satisfied but this causes no difficulties.

4 Divergence Damping

The divergence damping term, Cd,i∇h · Vi, appears in the pressure equation. In simplified terms, the
coefficient Cd is taken proportional to the inverse of the time step, Cd ∼ 1

∆t
. In practice we have found

better results by taking Cd ∼ ν
∆x2 . For explicit time stepping theses are very similar since the explicit time

step restriction is something like ν∆t
∆x2 < C. To allow for the case ν = 0 we use the minumum grid spacing,

hmin, instead of ν, if hmin > ν. The size of Cd affects the time step, the stability condition is proportional
to Cd∆t. As a result we do not want Cd to be much larger than 1/∆t, and thus it is limited by Ct

∆t
where

Ct is a constant with default value of 0.25. (Note that we don’t actually know the true ∆t at this point, it
depends on Cd, so we just use a guess).

Here is the actual formula for the divergence damping coefficient:

Cd,i = min(Di,
Ct

∆t
)

where

Di = C0 max(ν, hmin)

(

1

(∆0,r1
x1,i)2

+
1

(∆0,r2
x2,i)2

+
1

(∆0,r3
x3,i)2

)

∆0,r1
xm,i =

1

2
(xm,i1+1 − xm,i1−1) (undivided second difference)

hmin = min
i

(‖∆+,r1
xi‖, ∆+,r2

xi‖, ∆+,r3
xi‖) (minimum grid spacing)

and where C0 = 1. by default.

5 Artificial Diffusion

OverBlown implements an artificial diffusion based on a second-order undivided difference or a fourth-
order undivided difference. The second-order artificial diffusion is

d2,i = (ad21 + ad22|∇hVi|1)

nd
∑

m=1

∆m+∆m−Vi (4)

while the in the fourth-order one is

d4,i = − (ad41 + ad42|∇hVi|1)

nd
∑

m=1

∆2
m+∆2

m−
Vi (5)

5 ARTIFICIAL DIFFUSION 5

Here |∇hVi|1 is the magnitude of the gradient of the velocity and ∆m± are the forward and backward
undivided difference operators in direction m

|∇hVi|1 = n−2
d

∑nd

m=1

∑nd

n=1 |Dm,hVni|
∆1+Vi = Vi1+1 − Vi

∆1−Vi = Vi − Vi1−1

∆2+Vi = Vi2+1 − Vi

∆2−Vi = Vi − Vi2−1 etc.

The artificial diffusion is added to the momentum equations

d

dt
Vi + (Vi · ∇h)Vi + ∇hPi − ν∆hVi − f(xi, t) − dm,i = 0

but does not change the pressure equation. Typical choices for the constants ad21 = ad41 = 1 and
ad22 = ad42 = .5. These artificial diffusions should not affect the order of accuracy of the method. With
the artificial diffusion turned on to a sufficient degree, the real viscosity can be set at low as zero, nu = 0.

This form of the artficial diffusion is based on a theoretical result [6][7] that states that the minimum
scale, λmin, of solutions to the incompressible Navier-Stokes equations is proportional to the square root
of the kinematic viscosity divided by the square root of the maximum velocity gradient:

λmin ∝

√

ν

|∇u| + c
.

This result is valid locally in space so that |∇u| measures the local value of the velocity gradient. The
minimum scale measures the size of the smallest eddy or width of the sharpest shear layer as a function
of the viscosity and the size of the gradients of u. Scales smaller than the minimum scale are in the
exponentially small part of the spectrum.

This result can be used to tell us the smallest value that we can choose for the (artificial) viscosity, νA,
and still obtain a reasonable numerical solution. We require that the artificial viscosity be large enough so
that the smallest (but still significant) features of the flow are resolved on the given mesh. If the local grid
spacing is h, then we need

h ∝

√

νA

|∇u| + c
.

This gives
νA = (c1 + c2|∇u|)h2

and thus we can choose an artificial diffusion of

(c1 + c2|∇u|)h2∆u

which is just the form (4).
In the fourth-order case we wish to add an artificial diffusion of the form

−νA∆2u

since, as we will see, this will lead to νA ∝ h4. In this case, if we consider solutions to the incompressible
Navier-Stokes equations with the diffusion term ν∆u replaced by −νA∆2u then the minimum scale would
be

λmin ∝

(

νA

|∇u|

)1/4

Following the previous argument leads us to choose an artificial diffusion of the form

−(c1 + c2|∇u|)h4∆2u

which is just like (5).

6 BOUNDARY CONDITIONS 6

6 Boundary Conditions

The boundary conditions for method INS are

noSlipWall =

{

u = g velocity specified

∇ · u = 0 divergence zero

slipWall =











n · u = g normal velocity specified

∂n(tm · u) = 0 normal derivative of tangential velcity is zero

∇ · u = 0 divergence zero

inflowWithVelocityGiven =

{

u = g velocity specified

∂np = 0 normal derivative of the pressure zero.

outflow =

{

extrapolate u

αp + β∂np = g mixed derivative of p given.

symmetry =

{

n · u: odd, tm · u: even vector symmetry

∂np = 0 normal derivative of the pressure zero.

dirichletBoundaryCondition =

{

u = g velocity specified

p = P pressure given

7 BOUNDARY CONDITIONS FOR THE FOURTH-ORDER METHOD 7

7 Boundary conditions for the fourth-order method

Here are the analytic and numerical conditions that we impose at a boundary inorder to determine the
values of u at the two ghost points.

noSlipWall: Analytic boundary conditions

u = uB(x, t)

plus numerical boundary conditions

tµ ·
{

ν∆u −∇p − (u · ∇)u − ut

}

= 0

Extrapolate tµ · u = 0

∇ · u = 0

∂n(∇ · u) = 0

inflowWithVelocityGiven or outflow: Analytic boundary conditions for inflow are

u = uI(x, t) (inflow)

For outflow the equation is used on the boundary. The numerical boundary conditions are

tµ · (unn) = 0

Extrapolate tµ · u = 0

∇ · u = 0

∂n(∇ · u) = 0

slipWall: Analytic boundary conditions are

n · u = n · uB

The numerical boundary conditions are

tµ ·
{

ν∆u −∇p − (u · ∇)u − ut

}

= 0 determines tµ · u on the boundary

tµ · (un) = 0

tµ · (unnn) = 0

∇ · u = 0

∂n(∇ · u) = 0

Discretizing the Boundary conditions: For the purposes of this discussion assume that the boundary
condition for u is of the form u(x, t) = uB(x, t) for x ∈ ∂Ω. More general boundary conditions on u and
p, such as extrapolation conditions, can also be dealt with although some of the details of implementation

7 BOUNDARY CONDITIONS FOR THE FOURTH-ORDER METHOD 8

may vary. At a boundary the following conditions are applied

Ui − uB(xi) = 0
∇4 · Ui = 0

D4n(∇4 · Ui) = 0
d
dt
Ui + (Ui · ∇4)Ui + ∇4Pi − ν∆4Ui − fi = 0
∆4Pi +

∑nd

m=1 ∇4Um,i · D4xm
Ui −∇4 · fi = 0























for i ∈ Boundary

tµ · D4
+mUi = 0

D4
+mPi = 0

}

for i ∈ 2nd fictitious line

where tµ, µ = 1, nd − 1 are linearly independent vectors that are tangent to the boundary. In the extrap-
olation conditions either D+m or D−m should be chosen, as appropriate. Thus at each point along the
boundary there are 12 equations for the 12 unknowns (Ui, Pi) located on the boundary and the 2 lines of
fictitious points. Note that two of the numerical boundary conditions couple the pressure and velocity. In
order to advance the velocity with an explicit time stepping method it convenient to decouple the solution
of the pressure equation from the solution of the velocity. A procedure to accomplish this is described in
the next section on time stepping.

Edges and Vertices: An important special case concerns obtaining solution values at points that lie
near edges and vertices of grids (or corners of grids in 2D). Define a boundary edge to be the edge that
is formed at the intersection of adjacent faces of the unit cube where both faces are boundaries of the
computational domain. Along a boundary edge, values of the solution are required at the fictitious points
in the region exterior to both boundary faces. For example, suppose that the edge defined by i1 = n1,a,
i2 = n2,a and i3 = n3,a, . . . , n3,b is a boundary edge. Values must be determined at the exterior points
i = (n1,a + m,n2,a + n, i3) for m,n = −2,−1.

Here we derive a more accurate formula than was in my paper. These expressions will be exact for
polynomials of degree 4. By Taylor series,

u(r1, r2) = u(0, 0) + D1(r1, r2) + D2(r1, r2) + D3(r1, r2) + D4(r1, r2) + O(|r|6)

where

D1(r1, r2) = (r1∂r1
+ r2∂r2

)u(0, 0)

D2(r1, r2) =
1

2
(r1

2∂2
r1

+ r2
2∂2

r2
+ 2r1r2∂r1

∂r2
)u(0, 0)

D3(r1, r2) =
1

3!
(r1

3∂3
r + r2

3∂3
r2

+ 3r1
2r2∂

2
r1

∂r2
+ 3r1r2

2∂r1
∂2

r2
)u(0, 0)

We also have

u(−r1,−r2) = 2u(0, 0) − u(r1, r2) + 2D2(r1, r2) + 2D4(r1, r2) + O(|r|6) (6)

u(2r1, 2r2) = u(0, 0) + 2D1(r1, r2) + 4D2(r1, r2) + 8D3(r1, r2) + 16D4(r1, r2) + O(|r|6)
(7)

8u(r1, r2) − u(2r1, 2r2) = 7u(0, 0) + 6D1(r1, r2) + 4D2(r1, r2) − 8D4(r1, r2) + O(|r|6) (8)

From equation (8) we can solve for D4(r1, r2),

D4(r1, r2) =
7

8
u(0, 0) − u(r1, r2) +

1

8
u(2r1, 2r2) +

3

4
D1(r1, r2) +

1

2
D2(r1, r2) + O(|r|5 + |s|5)

7 BOUNDARY CONDITIONS FOR THE FOURTH-ORDER METHOD 9

and substitute into equation (6)

u(−r1,−r2) =
15

4
u(0, 0) − 3u(r1, r2) +

1

4
u(2r1, 2r2) +

3

2
D1(r1, r2) + 3D2(r1, r2) + O(|r|6) (9)

We will use this last equation to determine u at the first corner ghost point, U−1,−1,i3 . Proceeding in a
similar way it follows that

u(−2r1,−r2) =
15

4
u(0, 0) − 3u(2r1, r2) +

1

4
u(4r1, 2r2) +

3

2
D1(2r1, r2) + 3D2(2r1, r2) + O(|r|6)O(|r|6)

(10)

u(−r1,−2r2) =
15

4
u(0, 0) − 3u(r1, 2r2) +

1

4
u(2r1, 4r2) +

3

2
D1(r1, 2r2) + 3D2(r1, 2r2) + O(|r|6)O(|r|6)

(11)

u(−2r1,−2r2) = 30u(0, 0) − 32u(r1, r2) + 3u(2r1, 2r2) + 24D1(r1, r2) + 24D2(r1, r2) + O(|r|6)O(|r|6)
(12)

from which we will determine the ghost points values at U−2,−2,i3 , U−2,−1,i3 and U−1,−2,i3 . By sym-
metry we obtain formulae for ghost points outside all other edges in three-dimensions, U−2:−1,i2,−2:−1,
Ui1,−2:−1,−2:−1. For ghost points outside the vertices in three-dimensions we have

u(−r1,−r2,−r3) =
15

4
u(0, 0) − 3u(r1, r2, r3) +

1

4
u(2r1, 2r2, 2r3) (13)

+
3

2
D1(r1, r2, r3) + 3D2(r1, r2, r3) + O(|r|6)O(|r|6) (14)

where

D1(r1, r2, r3) =
(

r1∂r1
+ r2∂r2

+ r3∂r3

)

u(0, 0, 0)

D2(r1, r2, r3) =
1

2

(

r1
2∂2

r1
+ r2

2∂2
r2

+ r3
2∂2

r3
+ 2r1r2∂r1

∂r2
+ 2r1r3∂r1

∂r3
+ 2r2r3∂r2

∂r3

)

u(0, 0, 0)

D3(r1, r2, r3) =
1

3!

3
∑

m1=1

3
∑

m2=1

3
∑

m3=1

rm1
rm2

rm3
∂m1

∂m2
∂m3

u(0, 0, 0)

=
1

3!

(

r1
3∂3

r + r2
3∂3

r2
+ r3

3∂3
r3

+ 3r1
2r2∂

2
r1

∂r2
+ 3r1r2

2∂r1
∂2

r2

+ 3r1
2r3∂

2
r1

∂r3
+ 3r1r3

2∂r1
∂2

r3
+ 3r2

2r3∂
2
r2

∂r3
+ 3r2r3

2∂r2
∂2

r3
+ 6r1r2r3∂r1

∂r2
∂r3

)

u(0, 0, 0)

In order to evaluate the formulae (9,10,11, 12,14) we need to evaluate the derivatives appearing in D1

and D2. All the non-mixed derivatives ∂mu(0, 0)/∂m
rn

, m = 1, 2, can be evaluated using the boundary
values since these are all tangential derivatives. The second-order mixed derivative term such as ur1r2

requires a bit more work. In two-dimensions we evaluate this term by taking the parametric derivatives of
the divergence, ∂rm

∇ · u = 0. Since

∇ · u =
2

∑

n=1

(∂xrn) urn
+

2
∑

n=1

(∂yrn) vrn

then ∂rm
∇ · u = 0 gives

(∂xr2) ur1r2
+ (∂yr2) vr1r2

=(∂xr2)r1
ur2

+ (∂xr1) ur1r1
+ (∂xr1)r1

∂r1
u+

(∂yr2)r1
vr2

+ (∂yr1) vr1r1
+ (∂yr1)r1

∂r1
v

(∂xr1) ur1r2
+ (∂yr1) vr1r2

=(∂xr2) ur2r2
+ (∂xr2)r2

∂r2
u...

7 BOUNDARY CONDITIONS FOR THE FOURTH-ORDER METHOD 10

These last two equations can be solved for ur1r2
and vr1r2

in terms of known tangential derivatives.
In three dimensions taking the two parametric derivatives of the divergence,

(∂xr2) ur1r2
+ (∂yr2) vr1r2

+ (∂zr2) wr1r2
=... (15)

(∂xr1) ur1r2
+ (∂yr1) vr1r2

+ (∂zr1) wr1r2
=... (16)

gives only two equations for the three unknowns, ur1r2
, vr1r2

and wr1r2
. We therefore add an extra condition

by extrapolating the tangential component of the velocity,

t3 · D
6
+,1,2Ui1−1,i2−1,i3 = 0 (17)

Solve the last equation for t3 · Ui1−1,i2−1,i3 gives

t3 · Ui1−1,i2−1,i3 = E6
+,1,2t3 · Ui1−1,i2−1,i3 (18)

where we have introduced the operator E 6
+,1,2. By substituting this last equation (18) into t3· equation (9),

t3·u(−r1,−r2) = t3·

(

15

4
u(0, 0) − 3u(r1, r2) +

1

4
u(2r1, 2r2) +

3

2
D1(r1, r2)u(0) + 3D2(r1, r2)u(0)

)

+O(|r|6)

we can eliminate t3 · Ui1−1,i2−1,i3 and obtain an equation for t3 · ur1r2
in terms of known quanitites,

t3 ·
(

E6
+,1,2Ui1−1,i2−1,i3

)

= t3 ·
(15

4
u(0, 0) − 3u(r1, r2) +

1

4
u(2r1, 2r2) +

3

2
D1(r1, r2)u(0)

+
3

2
(r1

2∂2
r1

+ r2
2∂2

r2
+ r3

2∂2
r3

+ 2r1r2∂r1
∂r2

+ 2r1r3∂r1
∂r3

+ 2r2r3∂r2
∂r3

)u(0, 0)
)

or re-written as

t3 · ur1r2
(0, 0) =

1

3

{

t3 ·
(

E6
+,1,2Ui1−1,i2−1,i3

)

− t3 ·
(15

4
u(0, 0) − 3u(r1, r2) +

1

4
u(2r1, 2r2) +

3

2
D1(r1, r2)u(0)

(19)

+
3

2
(r1

2∂2
r1

+ r2
2∂2

r2
+ r3

2∂2
r3

+ 2r1r3∂r1
∂r3

+ 2r2r3∂r2
∂r3

)u(0, 0)
}

To summarize we solve equations (15,16,19) for the three unknowns ur1r2
, vr1r2

and wr1r2
.

Solving the numerical boundary equations: The numerical boundary conditions (??) define the
values of U on two lines of fictitious points in terms of values of the velocity on the boundary and the
interior. The equations couple the unknowns in the tangential direction to the boundary so that in principle
a system of equations for all boundary points must be solved. However, when the grid is nearly orthogonal
to the boundary there is a much more efficient way to solve the boundary conditions. The first step in the
algorithm is to solve for the tangential components of the velocity from

Ui(t) − uB(xi, t) = 0

tµ ·
{

d
dt
Ui(t) + (Ui(t) · ∇4)Ui(t) + ∇4P

∗(t) − ν∆4Ui(t) − f
}

= 0

}

for i ∈ Boundary

tµ · D6
+m(Ui(t)) = 0

}

for i ∈ Second fictitious line

If the grid is orthogonal to the boundary then the discrete Laplacian applied at boundary will not have any
mixed derivative terms. Therefore the only fictitious points appearing in the equation applied at the the

7 BOUNDARY CONDITIONS FOR THE FOURTH-ORDER METHOD 11

boundary point (i1, i2, i3) will be the two points (i1, i2, i3 − n) n = 1, 2 (here we assume that i3 is in the
normal direction to the boundary). Thus for each point on the boundary (i1, i2, i3) the values of tµ · u
can be determined at the fictitious points (i1, i2, i3 − 1) and (i1, i2, i3 − 2). There is no coupling between
adjacent boundary points so no large system of equations need be solved. The tangential components of
the velocity are determined for all fictitious points on the entire boundary. The second step is to determine
the the normal component of the velocity at the fictitious points from

Ui(t) − uB(xi, t) = 0
∇4 · Ui(t) = 0

D4n(∇4 · Ui(t)) = 0







for i ∈ Boundary

If the grid is orthogonal to the boundary then the divergence on the boundary can be written in the form

∇ · u =
1

e1e2e3

{

∂

∂n
(e2e3n · u) +

∂

∂t1
(e1e3t1 · u) +

∂

∂t2
(e1e2t2 · u)

}

where the em are functions of ∂x/∂r. Note that only normal derivatives of n · u appear in the expression
for the divergence. Thus, at a boundary point, (i1, i2, i3), the stencil for ∇4 · U will only involve the
fictitious points at (i1, i2, i3 − n), n = 1, 2. Similarly, the stencil for D4n(∇4 · U) at a boundary will
only involve the fictitious points at (i1, i2, i3 − n), n = 1, 2. Thus there is no coupling between adjacent
boundary points and the unknown values for n · u can be easily determined. Note that the equations for
D4n(∇4 · U) will couple values for tµ · u at fictitious points along the boundary but these values have
already been determined in the first step.

In practice the boundary conditions are solved in a correction mode – some initial guess is assumed for
the values at the fictitious points and a correction is computed. If the grid is orthogonal or nearly orthogonal
to the boundary then the first correction will give an accurate answer to the boundary conditions. If the
grid is not orthogonal to the boundary then the solution procedure can repeated one or more times until a
desired accuracy is achieved. This iteration should converge quickly provided that the grid is not overly
skewed.

8 TURBULENCE MODELS 12

8 Turbulence models

The typical RANS model for the incompressible Navier-Stokes equations which uses the Boussinesq eddy
viscosity approximation is

∂tui + uk∂xk
ui + ∂xi

p = ∂xk

(

(ν + νT)(∂xk
ui + ∂xi

uk)
)

where νT is the turbulent eddy viscosity.

8.1 Spalart-Allmaras turbulence model

Spalart-Allmaras one equation model

νT = ν̃fv1

∂tν̃ + Uj∂j ν̃ = cb1S̃ν̃ − cw1fw(ν̃/d)2 +
1

σ

[

∂k[(ν + ν̃)∂kν̃] + cb2∂kν̃∂kν̃
]

cb1 = .1355, cb2 = .622,cv1 = 7.1, σ = 2/3

cw1 =
cb1

κ2
+

(1 + cb2)

σ
, cw2 = 0.3, cw3 = 2, κ = .41

fv1 =
χ3

χ3 + c3
v1

, fv2 = 1 −
χ

1 + χfv1

, fw = g

[

1 + c6
w3

g6 + c6
w3

]1/6

χ =
ν̃

ν
, g = r + cw2(r

6 − r), r =
ν̃

S̃κ2d2

S̃ = S +
ν̃

κ2d2
fv2, S =

√

2ΩijΩij

Ωij = (1/2)(∂iUj − ∂jUi) rotation tensor

Depends on d, the distance to the nearest surface.
Notes fv2 can be positive or negative but is bounded from above by 1 and below by ??

fv2 = 1 −
χ

1 + χfv1

= 1 −
1

χ−1 + 1/[1 + (cv1/χ)−3]

→ 0 as χ → ∞

→ 1 as χ → 0

≈ 1 −
1

(1/7) + (1/2)
= −3/4 when χ = cv1

Since fv2 can be negative, so can r and g.
On a rectangular grid this is discretized as

∂tν̃i + UiD0xUi + ViD0yUi = cb1S̃iν̃i − cw1fw(ν̃/d)2

+
1

σ
D+x[(ν + ν̃i1−

1

2

)D−xν̃i + D+y[(ν + ν̃i2−
1

2

)D−yν̃i]

+ cb2

{

(D0xν̃)2 + (D0yν̃)2
}

8 TURBULENCE MODELS 13

−1 −0.5 0 0.5 1 1.5 2
−5

0

5

10

15

20

25

r

Spalart−Allmaras functions

g(r)
fw(r)

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

χ

Spalart−Allmaras functions

f
v1

(χ)
f
v2

(χ)

Figure 1: Behaviour of the SpalartConvergence fudge functions

On curvilinear grids we use the conservative form of the second order term

∇ · (a∇φ) =
1

J

{ ∂

∂r1

(

A11 ∂φ

∂r1

)

+
∂

∂r2

(

A22 ∂φ

∂r2

)

+
∂

∂r1

(

A12 ∂φ

∂r2

)

+
∂

∂r2

(

A21 ∂φ

∂r1

)

}

where

A11 = aJ

[

∂r1

∂x1

2

+
∂r1

∂x2

2]

A22 = aJ

[

∂r2

∂x1

2

+
∂r2

∂x2

2]

A12 = aJ

[

∂r1

∂x1

∂r2

∂x1

+
∂r1

∂x2

∂r2

∂x2

]

A second-order accurate compact discretization to this expression is

∇ · (a∇φ) ≈
1

J

{

D+r1

(

A11
i1−

1

2

D−r1
φ
)

+ D+r2

(

A22
i2−

1

2

D−r2
φ
)

+ D0r1

(

A12D0r2
φ
)

+ D0r2

(

A21D0r1
φ
)

}

where we can define the cell average values for Amn by

A11
i1−

1

2

≈
1

2
(A11

i1
+ A11

i1−1)

A22
i2−

1

2

≈
1

2
(A22

i2
+ A22

i2−1)

8 TURBULENCE MODELS 14

8.2 k − ε turbulence model

Here is the k − ε model

νT = Cµk
2/ε

∂tk + Uj∂jk = τij∂jUi − ε + ∂j[(ν + νT /σk)∂jk]

∂tε + Uj∂jε = Cε1
ε

k
τij∂jUi − Cε2ε

2/k + ∂j[(ν + νT /σε)∂jε]

Cε1 = 1.44, Cε2 = 1.92, Cµ = .09, σk = 1, σε = 1.3

The production term is P = τij∂jUi

P = τij∂jUi

= νT (∂jUi + ∂iUj)∂jUi

=
νT

2
(∂jUi + ∂iUj)(∂jUi + ∂iUj)

=
νT

2

(

(2ux)
2 + (2vy)

2 + (2wz)
2 + 2(uy + vx)

2 + 2(uz + wx)
2 + 2(vz + wy)

2
)

= νT

(

2(u2
x + v2

y + w2
z) + (uy + vx)

2 + (uz + wx)
2 + (vz + wy)

2
)

8.3 Diffusion Operator

When a turbulence model is added to the incompressible Navier-Stokes equation the diffusion operator
usually takes the form of

Di =
∑

j

∂xj

(

νT (∂xi
uj + ∂xj

ui)
)

where we will write νT instead of ν + νT in this section. In particular

Du = ∂x(2νT ux) + ∂y(νT uy) + ∂z(νT uz) + ∂y(νT vx) + ∂z(νT wx)

Dv = ∂x(νT vx) + ∂y(2νT vy) + ∂z(νT vz) + ∂x(νT uy) + ∂z(νT wy)

Dw = ∂x(νT wx) + ∂y(νT wy) + ∂z(2νT wz) + ∂y(νT vz) + ∂x(νT uz)

We can write these in a more “symmetric” form as follows. Since ux + vy + wz = 0, it follows that

∂x(νT ux) = −∂x(νT vy) − ∂x(νT wz)

and thus

Du = ∂x(νT ux) + ∂y(νT uy) + ∂z(νT uz) + ∂y(νT vx) − ∂x(νT vy) + ∂z(νT wx) − ∂x(νT wz)

Therefore the diffusion operator can be written in a form where the principle part is the same for all
components,

Du = ∇ · (νT∇u) + ∂y(νT vx) − ∂x(νT vy) + ∂z(νT wx) − ∂x(νT wz)

Dv = ∇ · (νT∇v) + ∂z(νT wy) − ∂y(νT wz) + ∂x(νT uy) − ∂y(νT ux)

Dw = ∇ · (νT∇w) + ∂x(νT uz) − ∂z(νT ux) + ∂y(νT vz) − ∂z(νT vy)

8 TURBULENCE MODELS 15

Note that the highest order derivatives cancel in the last four terms in these expressions,

Du = ∇ · (νT∇u) + ∂y(νT)vx − ∂x(νT)vy + ∂z(νT)wx − ∂x(νT)wz

Dv = ∇ · (νT∇v) + ∂z(νT)wy − ∂y(νT)wz + ∂x(νT)uy − ∂y(νT)ux

Dw = ∇ · (νT∇w) + ∂x(νT)uz − ∂z(νT)ux + ∂y(νT)vz − ∂z(νT)vy

8.4 Revised pressure equation

When a turbulence model is added to the incompressible Navier-Stokes equation the diffusion operator
usually takes the form of

Di =
∑

j

∂xj

(

νT (∂xi
uj + ∂xj

ui)
)

The pressure equation is derived from taking the divergence of the momentum equations,

∂tu + (u · ∇)u + ∇p = D

and using ∇ · u = 0 to give
∆p = −∇u : ∇u + ∇ · D

For a constant viscosity, the last term on the right hand side is zero. When the viscosity is not constant
we need to include the divergence of the diffusion operator in the equation for the pressure. This takes the
form

∇ · D =
∑

i

∑

j

∂xi
∂xj

[

νT

(

∂xj
ui + ∂xi

uj

)]

=
∑

j

∂xj

[

∑

i

∂xi
νT ∂xj

ui

]

+
∑

i

∂xi

[

∑

j

∂xj
νT ∂xi

uj

]

= 2
∑

i

∂xi

[

∑

j

∂xj
νT ∂xi

uj

]

where we have again used ∇ · u = 0.
In two dimensions this takes the form

∇ · D(2d) = 2
[

∂x

(

∂xνT ∂xu + ∂yνT ∂xv
)

+ ∂y

(

∂xνT ∂yu + ∂yνT ∂yv
)]

= 2
[

∂xνT ∆u + ∂2
xνT ∂xu + ∂x∂yνT ∂yu

+ ∂yνT ∆v + ∂x∂yνT ∂xv + ∂2
yνT ∂yv

]

In three dimensions,

∇ · D(3d) = 2
[

∂x

(

∂xνT ∂xu + ∂yνT ∂xv + ∂zνT ∂xw
)

+ ∂y

(

∂xνT ∂yu + ∂yνT ∂yv + ∂zνT ∂yw
)

+ ∂z

(

∂xνT ∂zu + ∂yνT ∂zv + ∂zνT ∂zw
)]

= 2
[

∂xνT ∆u + ∂2
xνT ∂xu + ∂x∂yνT ∂yu + ∂x∂zνT ∂zu

+ ∂yνT ∆v + ∂x∂yνT ∂xv + ∂2
yνT ∂yv + ∂y∂zνT ∂zv

+ ∂zνT ∆w + ∂x∂zνT ∂xw + ∂y∂zνT ∂yw + ∂2
zνT ∂zw

]

8 TURBULENCE MODELS 16

The addition of artificial dissipation also changes the pressure equation. The second-order artificial
dissipation is

d2,i = (ad21 + ad22|∇hVi|1)

nd
∑

m=1

∆m+∆m−Vi (20)

while the the fourth-order one is

d4,i = − (ad41 + ad42|∇hVi|1)

nd
∑

m=1

∆2
m+∆2

m−
Vi (21)

The artificial dissipation is of the form

d =
[

α0 + α1G(∇u)
]

nd
∑

m=1

∆p
m+∆p

m−u

G(∇u) = |ux| + |uy| + |vx| + |vy| + . . .

Taking the divergence of this expression results in

∇ · d = α1

[

Gx

∑

m

∆p
m+∆p

m−U + Gy

∑

m

∆p
m+∆p

m−V
]

where

Gx = sgn(ux) uxx + sgn(uy) uxy + sgn(vx) vxx + sgn(vy) vxy + . . .

and sgn(x) is +1, −1 or 0 for x > 0, x < 0 or x = 0.

8.4.1 Revised pressure boundary condition

The pressure boundary condition also is changed to include the new diffusion operator:

∂np = n ·
{

− ∂tu − (u · ∇)u + D
}

We would like to write the diffusion operator in a way similiar to curl-curl form,

∆u = −∇×∇× u + ∇(∇ · u),

used in the INS equations. Expanding the expression for Du gives

Du = ∂x(2νT ux) + ∂y(νT uy) + ∂z(νT uz) + ∂y(νT vx) + ∂z(νT wx)

= 2νT uxx + νT uyy + νT uzz + 2∂xνT ux + ∂yνT (uy + vx) + ∂zνT (uz + wx) + νT (vxy + wxz)

= νT ∆u + 2∂xνT ux + ∂yνT (uy + vx) + ∂zνT (uz + wx)

where we have used vxy + wxz = −uxx Thus we can write

Du = νT ∆u − 2∂xνT (vy + wz) + ∂yνT (uy + vx) + ∂zνT (uz + wx)

This leads in two dimensions to the curl-curl form

D(2D)
u = νT (−vxy + uyy) − 2∂xνT vy + ∂yνT (uy + vx) (22)

D(2D)
v = νT (vxx − uxy) − 2∂yνT ux + ∂xνT (vx + uy) (23)

8 TURBULENCE MODELS 17

while in three dimensions,

Du = νT (−vxy − wxz + uyy + uzz) − 2∂xνT (vy + wz) + ∂yνT (uy + vx) + ∂zνT (uz + wx) (24)

Dv = νT (vxx − uxy − wyz + vzz) − 2∂yνT (wz + ux) + ∂zνT (vz + wy) + ∂xνT (vx + uy) (25)

Dw = νT (wxx + wyy − uxz − vyz) − 2∂zνT (ux + vy) + ∂xνT (wx + uz) + ∂yνT (wy + vz) (26)

These curl-curl forms (22-26) remove the normal derivatives of the normal components of the velocity
from n · (Du,Dv,Dw). For example, the expression for Du contains no x-derivatives of u while Dv

contains no y-derivatives of v.
The alternative conservative form is

Du = ∂x(−2νT (vy + wz)) + ∂y(νT uy) + ∂z(νT uz) + ∂y(νT vx) + ∂z(νT wx)

Dv = ∂x(νT vx) + ∂y(−2νT (ux + wz)) + ∂z(νT vz) + ∂x(νT uy) + ∂z(νT wy)

Dw = ∂x(νT wx) + ∂y(νT wy) + ∂z(−2νT (ux + vy)) + ∂y(νT vz) + ∂x(νT uz)

9 STEADY STATE LINE SOLVER 18

9 Steady state line solver

We first consider the case of a rectangular grid in two space dimensions.
The implicit line solver uses local time stepping where the local time step ∆i is defined from

∆ti = ...

We solve implicit scalar-tri-diagonal systems in each spatial direction. Along the x-direction we solve
a tridiagonal system for U , followed by a tridiagonal system for V for the equations

Un+1
i

− Un
i

∆ti
= −

{

UnD0xU
n+1 + V nD0yU

n + D0xP
n
}

+ ν
{

D+xD−xU
n+1 + (Un

j+1 − 2Un+1 + Un
j−1)/h

2
y

}

+ νA(Un)
{

∆+x∆−xU
n+1 + (Un

j+1 − 2Un+1 + Un
j−1)

}

V n+1
i

− V n
i

∆ti
= −

{

UnD0xV
n+1 + V nD0yV

n + D0yP
n
}

+ ν
{

D+xD−xV
n+1 + (V n

j+1 − 2V n+1 + V n
j−1)/h

2
y

}

+ ν(2)(Un)
{

∆+x∆−xV
n+1 + (V n

j+1 − 2V n+1 + V n
j−1)

}

Here ν(2)(Un) is the coefficient of the artificial dissipation. There is also a self-adjoint version of the
artificial dissipation,

βSA = ∆+x

[

ν
(2)

i1−
1

2

∆−x

]

U + ∆+y

[

ν
(2)

i2−
1

2

∆−y

]

U

= ν
(2)

i1+ 1

2

(Ui1+1 − U) − ν
(2)

i1−
1

2

(U − Ui1−1)

+ ν
(2)

i2+ 1

2

(Ui2+1 − U) − ν
(2)

i2−
1

2

(U − Ui2−1)

= ν
(2)

i1+ 1

2

Ui1+1 + ν
(2)

i1−
1

2

Ui1−1 + ν
(2)

i2+ 1

2

Ui2+1 + ν
(2)

i2−
1

2

Ui2−1

−
(

ν
(2)

i1+ 1

2

+ ν
(2)

i1−
1

2

+ ν
(2)

i2+ 1

2

+ ν
(2)

i2−
1

2

)

U

After solving in the x-direction we then solve along lines in the y-direction.
On curvilinear grids the expressions are a bit more complicated. Before discretization the equations

transformed to the unit-square are

ut = −
{

(urx + vry)ur + (usx + vsy)us + rxpr + sxps

}

+ ν
1

J

{

∂r(J(rxux + ryuy)) + ∂s(J(sxux + syuy))
}

ux = rxur + sxus

uy = ryur + syus

J = |∂x/∂r| = xrys − xsyr

We solve scalar-tridiagonal-systems in the r and s directions.

9 STEADY STATE LINE SOLVER 19

9.1 Fourth-order artificial dissipation

A fourth-order artificial dissipation is

ν(4)(Un)
{

(∆+x∆−x)
2U + (∆+y∆−y)

2U
}

or in a self-adjoint form

β
(4)
SA = ∆+x∆−x

[

ν
(4)
i

∆+x∆−x

]

U + ∆+y∆−y

[

ν
(4)
i

∆+y∆−y

]

U

= ν
(4)
i1+1∆+x∆−xUi1+1 − 2ν

(4)
i

∆+x∆−xU + ν
(4)
i1−1∆+x∆−xUi1−1

+ ν
(4)
i2+1∆+y∆−yUi2+1 − 2ν

(4)
i

∆+y∆−yU + ν
(4)
i2−1∆+y∆−yUi2−1

= ν
(4)
i1+1Ui1+2 − 2

[

ν
(4)
i1+1 + ν

(4)
i

]

Ui1+1 + ν
(4)
i1−1Ui1−2 − 2

[

ν
(4)
i1−1 + ν

(4)
i

]

Ui1−1

+ ν
(4)
i2+1Ui2+2 − 2

[

ν
(4)
i2+1 + ν

(4)
i

]

Ui2+1 + ν
(4)
i2−1Ui2−2 − 2

[

ν
(4)
i2−1 + ν

(4)
i

]

Ui2−1

+
[

ν
(4)
i1+1 + ν

(4)
i2+1 + 8ν

(4)
i

+ ν
(4)
i1−1 + ν

(4)
i2−1

]

Ui

10 CONVERGENCE RESULTS 20

10 Convergence results

This section details the results of various convergence tests. Convergence results are run using the twilight-
zone option, also known less formally as the method of analytic solutions. In this case the equations are
forced so the the solution will be a known analytic function.

The tables show the maximum errors in the solution components. The rate shown is estimated conver-
gence rate, σ, assuming error ∝ hσ. The rate is estimated by a least squares fit to the data.

The 2D trigonometric solution used as a twilight zone function is

u =
1

2
cos(πω0x) cos(πω1y) cos(ω3πt) +

1

2

v =
1

2
sin(πω0x) sin(πω1y) cos(ω3πt) +

1

2

p = cos(πω0x) cos(πω1y) cos(ω3πt) +
1

2

The 3D trigonometric solution is

u = cos(πω0x) cos(πω1y) cos(πω2z) cos(ω3πt)

v =
1

2
sin(πω0x) sin(πω1y) cos(πω2z) cos(ω3πt)

w =
1

2
sin(πω0x) sin(πω1y) sin(πω2z) cos(ω3πt)

p =
1

2
sin(πω0x) cos(πω1y) cos(πω2z) sin(ω3πt)

When ω0 = ω1 = ω2 it follows that ∇ · u = 0. There are also algebraic polynomial solutions of different
orders.

Tables (2-6) show results from running OverBlown on various grids.

grid N p u v u ∇ · u
square20 20 2.9 × 10−1 3.4 × 10−2 3.4 × 10−2 3.4 × 10−2 5.0 × 10−1

square30 30 9.6 × 10−2 1.3 × 10−2 1.2 × 10−2 1.3 × 10−2 1.8 × 10−1

square40 40 4.5 × 10−2 7.2 × 10−3 6.7 × 10−3 7.2 × 10−3 8.1 × 10−2

rate 2.69 2.23 2.34 2.24 2.61

Table 1: incompressible Navier Stokes, order=2, ν = 0.1, t = 1, square, trig TZ, ω = 5.1, α = 1

grid N p u v u ∇ · u
square16.order4 16 8.3 × 10−2 1.2 × 10−2 1.2 × 10−2 1.2 × 10−2 1.4 × 10−1

square32.order4 32 6.5 × 10−3 4.8 × 10−4 3.9 × 10−4 4.8 × 10−4 7.6 × 10−3

square64.order4 64 3.4 × 10−4 2.6 × 10−5 2.3 × 10−5 2.6 × 10−5 2.6 × 10−4

rate 3.97 4.41 4.50 4.41 4.54

Table 2: incompressible Navier Stokes, order=4, ν = 0.1, t = 1, square, trig TZ, ω = 5.1, α = 1

10 CONVERGENCE RESULTS 21

grid N p u v ∇ · u
cic1 13 2.6 × 10−1 1.5 × 10−1 1.6 × 10−1 5.2 × 10−1

cic2 25 5.6 × 10−2 2.4 × 10−2 2.6 × 10−2 1.3 × 10−1

cic3 49 1.5 × 10−2 5.1 × 10−3 4.3 × 10−3 2.3 × 10−2

cic4 73 3.9 × 10−3 1.3 × 10−3 7.4 × 10−4 4.9 × 10−3

rate 2.4 2.7 3.0 2.7

Table 3: incompressible Navier Stokes, order=2, ν = 0.1, t = 1, cic, trig TZ, ω = 2

grid N p u v u ∇ · u
cicb.order4 61 1.2 × 10−4 3.8 × 10−5 3.7 × 10−5 3.8 × 10−5 1.9 × 10−4

cic.order4 121 9.6 × 10−6 1.7 × 10−6 2.1 × 10−6 2.1 × 10−6 9.6 × 10−6

cic2.order4 241 6.2 × 10−7 1.0 × 10−7 1.2 × 10−7 1.2 × 10−7 1.0 × 10−6

rate 3.86 4.30 4.18 4.19 3.78

Table 4: incompressible Navier Stokes, order=4, ν = 0.1, t = 1, cic, trig TZ, ω = 1, α = 1

grid N p u v w ∇ · u
box10 10 2.0 × 10−2 2.0 × 10−3 2.1 × 10−3 2.1 × 10−3 1.7 × 10−2

box20 20 5.0 × 10−3 3.4 × 10−4 3.1 × 10−4 3.1 × 10−4 2.7 × 10−3

box30 30 2.4 × 10−3 1.3 × 10−4 1.0 × 10−4 1.0 × 10−4 8.1 × 10−4

rate 1.9 2.5 2.8 2.8 2.8

Table 5: incompressible Navier Stokes, order=2, ν = 0.1, t = 1, box, trig TZ, ω = 2

grid N p u v w ∇ · u
box8.order4 8 1.4 × 10−3 2.9 × 10−4 2.6 × 10−4 2.6 × 10−4 1.2 × 10−3

box16.order4 16 3.8 × 10−5 8.4 × 10−6 7.8 × 10−6 7.8 × 10−6 6.6 × 10−5

box32.order4 32 3.6 × 10−6 1.7 × 10−7 1.8 × 10−7 1.8 × 10−7 1.6 × 10−6

rate 4.3 5.4 5.2 5.2 4.8

Table 6: incompressible Navier Stokes, order=4, ν = 0.1, t = 1, box, trig TZ, ω = 2

grid N p u v w ∇ · u
sib1 17 2.8 × 10−1 2.1 × 10−1 1.4 × 10−1 1.2 × 10−1 6.2 × 10−1

sib2 33 6.2 × 10−2 5.0 × 10−2 3.0 × 10−2 1.9 × 10−2 1.9 × 10−1

sib2a 49 3.0 × 10−2 1.7 × 10−2 8.8 × 10−3 1.2 × 10−2 7.8 × 10−2

rate 2.1 2.4 2.6 2.2 1.9

Table 7: incompressible Navier Stokes, order=2, ν = 0.1, t = 1, sib, trig TZ, ω = 2

10 CONVERGENCE RESULTS 22

grid N p u v w u ∇ · u
sib1.order4 30 1.0 × 10−2 1.6 × 10−2 8.8 × 10−3 7.5 × 10−3 1.6 × 10−2 8.3 × 10−2

sib1a.order4 60 8.2 × 10−4 9.9 × 10−4 4.5 × 10−4 6.6 × 10−4 9.9 × 10−4 6.2 × 10−3

sib2.order4 80 1.2 × 10−4 8.7 × 10−5 5.0 × 10−5 7.8 × 10−5 8.7 × 10−5 7.8 × 10−4

rate 4.38 5.08 5.10 4.44 5.08 4.57

Table 8: incompressible Navier Stokes, order=4, ν = 0.05, t = 1, sib, trig TZ, ω = 1, α = 1

Figure 2: Incompressible N-S, twilight zone solution for convergence test

11 SOME INTERESTING EXAMPLES 23

11 Some interesting examples

Here is a collection of interesting examples computed with the OverBlown incompressible solver.

11.1 Incompressible flow past a mast and sail

Figure (3) shows incompressible flow past a sail on a mast (grid created with Overture/-
sampleGrids/mastSail2d.cmd.

Figure 3: Incompressible flow past a mast and sail.

11 SOME INTERESTING EXAMPLES 24

11.2 Two falling bodies in an incompressible flow

Figure (4) shows two rigid bodies failing under the influence of gravity in an incompressible flow.

Figure 4: Two falling bodies in an incompressible flow.

11 SOME INTERESTING EXAMPLES 25

11.3 Incompressible flow past a truck

Figure (5) shows a computation of the incompressible Navier-Stokes equations for flow past the cab of a
truck. The steady state line solver was used for this computation.

Figure 5: Incompressible flow past the cab of a truck. Shown are the CAD geometry, the grids and some
tracer particles.

11 SOME INTERESTING EXAMPLES 26

11.4 Incompressible flow past a city scape

Figure (11.4) shows a computation of the incompressible Navier-Stokes equations for flow past a city
scape. The steady state line solver was used for this computation. The command file for generating this
grid is Overture/sampleGrids/multiBuildings.cmd and the OverBlown command file is
OverBlown/ins/multiBuildings.cmd.

3D flow past a city scape. Overlapping grid for a city scape.

Notes:

♦ pseudo steady-state line implicit solver, 4th-order dissipation,
♦ local time-stepping (spatially varying dt)
♦ requires 1.4GB of memory,
♦ cpu = 59s/step,
♦ 2.2 GHz Xeon, 2 GB of memory

REFERENCES 27

References

[1] D. L. BROWN, G. S. CHESSHIRE, W. D. HENSHAW, AND D. J. QUINLAN, Overture: An object
oriented software system for solving partial differential equations in serial and parallel environments,
in Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, 1997.

[2] D. L. BROWN, W. D. HENSHAW, AND D. J. QUINLAN, Overture: An object oriented framework
for solving partial differential equations, in Scientific Computing in Object-Oriented Parallel Envi-
ronments, Springer Lecture Notes in Computer Science, 1343, 1997, pp. 177–194.

[3] W. HENSHAW, A fourth-order accurate method for the incompressible Navier-Stokes equations on
overlapping grids, J. Comp. Phys., 113 (1994), pp. 13–25.

[4] , Overture: An object-oriented system for solving PDEs in moving geometries on overlapping
grids, in First AFOSR Conference on Dynamic Motion CFD, June 1996, L. Sakell and D. Knight,
eds., 1996, pp. 281–290.

[5] W. HENSHAW AND H.-O. KREISS, Analysis of a difference approximation for the incompressible
Navier-Stokes equations, Research Report LA-UR-95-3536, Los Alamos National Laboratory, 1995.

[6] W. HENSHAW, H.-O. KREISS, AND L. REYNA, On the smallest scale for the incompressible Navier-
Stokes equations, Theoretical and Computational Fluid Dynamics, 1 (1989), pp. 65–95.

[7] , Smallest scale estimates for the incompressible Navier-Stokes equations, Arch. Rational Mech.
Anal., 112 (1990), pp. 21–44.

[8] W. HENSHAW, H.-O. KREISS, AND L. REYNA, A fourth-order accurate difference approximation
for the incompressible Navier-Stokes equations, Comput. Fluids, 23 (1994), pp. 575–593.

Index
artificial diffusion, 4

boundary conditions, 6

convergence results
INS, 20

discretization
incompressible Navier-Stokes, 3

divergence damping, 4

pressure-poisson system, 3

28

